martes, 23 de marzo de 2010

MAT II MAXIMOS Y MINIMOS RELATIVOS

CRITERIO DE LA PRIMERA DERIVADA

·  Obtener la primera derivada.

·  Igualar la primera derivada a cero y resolver la ecuación. El valor o valores obtenidos para la variable, son donde pudiera haber máximos o mínimos en la función.

·  Se asignan valores próximos (menores y mayores respectivamente) a la variable independiente y se sustituyen en la derivada. Se observan los resultados; cuando estos pasan de positivos a negativos, se trata de un punto máximo; si pasa de negativo a positivo el punto crítico es mínimo.
Cuando existen dos o más resultados para la variable independiente, debe tener la precaución de utilizar valores cercanos a cada uno y a la vez distante de los demás, a fin de evitar errores al interpretar los resultados.
·  sustituir en la función original (Y) el o los valores de la variable independiente (X) para los cuales hubo cambio de signo. Cada una de las parejas de datos así obtenidas, corresponde a las coordenadas de un punto crítico.

CRITERIO DE LA SEGUNDA DERIVADA

Este método es más utilizado que el anterior, aunque no siempre es más sencillo. Se basa en que en un máximo relativo, la concavidad de una curva es hacia abajo y en consecuencia, su derivada será negativa; mientras que en un punto mínimo relativo, la concavidad es hacia arriba y la segunda derivada es positiva.
Este procedimiento consiste en:
·  calcular la primera y segunda derivadas

·  igualar la primera derivada a cero y resolver la ecuación.

·  sustituir las raíces (el valor o valores de X) de la primera derivada en la segunda derivada.
Si el resultado es positivo, hay mínimo. Si la segunda derivada resulta negativa, hay un máximo.
Si el resultado fuera cero, no se puede afirmar si hay o no un máximo o mínimo.
·  sustituir los valores de las raíces de la primera derivada en la función original, para conocer las coordenadas de los puntos máximo y mínimo.

APLICACIÓN DE MAXIMOS Y MINIMOS RELATIVOS EN LA SOLUCION DE PROBLEMAS


Existen muchos campos del conocimiento (aritmética, geometría, economía, física, biología, industria, etc.) donde se presentan problemas que se resuelven aplicando los conceptos de máximos y mínimos del cálculo diferencial.
Para resolver los problemas a partir de los datos existentes, es importante en primer lugar, encontrar la expresión matemática de la función que represente el problema y cuyos valores máximos o mínimos se desean obtener.
Si la expresión matemática contiene varias variables, deberá plantearse en función de una sola; las condiciones del problema deben aportar suficientes relaciones entre las variables, para poderse expresar a todas ellas en función de una sola variable independiente.
Una vez que se tenga la función en la forma Y=f(X), se aplican las normas ya estudiadas.
En muchos problemas prácticos resulta muy sencillo identificar cuales valores críticos dan máximos o mínimos; y en consecuencia, ya no será necesario aplicar el procedimiento completo.
Es conveniente construir la grafica que represente la función en cuestión, a fin de verificar los resultados

No hay comentarios:

Publicar un comentario